Что такое полупроводники? Сопротивление полупроводников

Чем является полупроводниковый материал? Какие у него особенности? Какова физика полупроводников? Как они построены? Что такое проводимость полупроводников? Какими физическими показателями они обладают?

Что называют полупроводниками?

что такое полупроводники

Так обозначают кристаллические материалы, которые не проводят электричество столь хорошо, как это делают металлы. Но всё же этот показатель лучше, чем имеют изоляторы. Такие характеристики обусловлены количеством подвижных носителей. Если рассматривать в общем, то здесь существует крепкая привязанность к ядрам. Но при введении в проводник нескольких атомов, допустим, сурьмы, которая обладает избытком электронов, это положение будет исправляться. При использовании индия получают элементы с позитивным зарядом. Все эти свойства широко применяются в транзисторах – специальных устройствах, которые могут усиливать, блокировать или пропускать ток только в одном направлении. Если рассматривать элемент NPN-типа, то можно отметить значительную усиливающую роль, что особенно бывает важным при передаче слабых сигналов.

Конструктивные особенности, которыми обладают электрические полупроводники

Проводники имеют много свободных электронов. Изоляторы ими вообще практически не обладают. Полупроводники же содержат и определённое количество свободных электронов, и пропуски с позитивным зарядом, которые готовы принять освободившиеся частицы. И что самое главное – они все проводят электрический ток. Рассмотренный ранее тип NPN-транзистора - не единый возможный полупроводниковый элемент. Так, существуют ещё PNP-транзисторы, а также диоды.

Если говорить про последний кратко, то это такой элемент, что может передавать сигналы только в одном направлении. Также диод может превратить переменный ток в постоянный. Каков механизм такого превращения? И почему он двигается только в одном направлении? Зависимо от того, откуда идёт ток, электроны и пропуски могут или расходиться, или идти навстречу. В первом случает из-за увеличения расстояния происходит прерывание подачи снабжения, поэтому и осуществляется передача носителей негативного напряжения только в одну сторону, то есть проводимость полупроводников является односторонней. Ведь ток может передаваться исключительно в случае, если составляющие частицы находятся рядом. А это возможно только при подаче тока с одной стороны. Вот такие типы полупроводников существуют и используются на данный момент.

Зонная структура

сопротивление полупровдников

Электрические и оптические свойства проводников связаны с тем, что при заполнении электронами уровней энергии они отделены от возможных состояний запрещенной зоной. Какие у неё особенности? Дело в том, что в запрещенной зоне отсутствуют уровни энергии. При помощи примесей и дефектов структуры это можно изменить. Высшая полностью заполненная зона называется валентной. Затем следует разрешенная, но пустая. Она называется зоной проводимости. Физика полупроводников - довольно интересная тема, и в рамках статьи она будет хорошо освещена.

Состояние электронов

проводимость полупроводников

Для этого используются такие понятия, как номер разрешенной зоны и квазиимпульс. Структура первой определяется законом дисперсии. Он говорит о том, что на неё влияет зависимость энергии от квазиимпульса. Так, если валентная зона является целиком заполненной электронами (которые переносят заряд в полупроводниках), то говорят, что в ней отсутствуют элементарные возбуждения. Если по какой-то причине частицы нет, то это значит, что здесь появилась положительно заряженная квазичастица – пропуск или дыра. Они являются носителями заряда в полупроводниках в валентной зоне.

Вырожденные зоны

Валентная зона в типичном проводнике является шестикратно вырожденной. Это без учета спин-орбитального взаимодействия и только когда квазиимпульс равен нулю. Она может расщепляться при этом же условии на двукратно и четырехкратно вырожденные зоны. Энергетическое расстояние между ними называется энергией спин-орбитального расщепления.

Примеси и дефекты в полупроводниках




физика полупроводников

Они могут быть электрически неактивными или активными. Использование первых позволяет получать в полупроводниках плюсовой или минусовой заряд, который может быть компенсирован появлением дыры в валентной зоне или электрона в проводимой зоне. Неактивные примеси являются нейтральными, и они относительно слабо влияют на электронные свойства. Причем часто может иметь значение то, какую валентность имеют атомы, которые берут участие в процессе передачи заряда, и строение кристаллической решетки.

Зависимо от вида и количества примесей может меняться и соотношение между количеством дыр и электронов. Поэтому материалы полупроводников должны всегда тщательно подбираться, чтобы получить желаемый результат. Этому предшествует значительное количество расчетов, а в последующем и экспериментов. Частицы, которые большинство называют основными носителями заряда, являются неосновными.

Дозированное введение примесей в полупроводники позволяет получать устройства с требуемыми свойствами. Дефекты в полупроводниках также могут быть в неактивном либо активном электрическом состоянии. Важными здесь являются дислокация, межузельный атом и вакансия. Жидкие и некристаллические проводники реагируют на примеси по-другому, чем кристаллические. Отсутствие жесткой структуры в конечном итоге выливается в то, что перемещенный атом получает другую валентность. Она будет отличаться от той, с которой он первоначально насыщает свои связи. Атому становится невыгодно отдавать или присоединять электрон. В таком случае он становится неактивным, и поэтому примесные полупроводники имеют большие шансы на выход из строя. Это приводит к тому, что нельзя менять тип проводимости с помощью легирования и создать, к примеру, р-n-переход.

Некоторые аморфные полупроводники могут изменять свои электронные свойства под воздействием легирования. Но это относится к ним в значительно меньшей степени, чем к кристаллическим. Чувствительность аморфных элементов к легированию можно повысить с помощью технологической обработки. В конечном итоге хочется отметить, что благодаря длительной и упорной работе примесные полупроводники все же представлены целым рядом результатов с хорошими характеристиками.

Статистика электронов в полупроводнике

Когда существует термодинамическое равновесие, то количество дыр и электронов определяется исключительно температурой, параметрами зонной структуры и концентрацией электрически активных примесей. Когда рассчитывается соотношение, то считается, что часть частиц будет находиться в зоне проводимости (на акцепторном или донорном уровне). Также принимается во внимание тот факт, что часть может уйти с валентной территории, и там образуются пропуски.

Электропроводность

типы полупроводников

Видео: Опыты №031 Зависимость сопротивления полупроводника от освещённости от https://neodim.org

В полупроводниках, кроме электронов, в качестве носителей зарядов могут выступить и ионы. Но их электропроводность в большинстве случае пренебрежительно мала. В качестве исключения можно привести только ионные суперпроводники. В полупроводниках действует три главных механизма электронного переноса:

  1. Основной зонный. В этом случает электрон приходит в движение благодаря изменению его энергии в пределах одной разрешенной территории.
  2. Прыжковый перенос по локализованным состояниям.
  3. Поляронный.

Экситон

Дыра и электрон могут образовывать связанное состояние. Оно называется экситоном Ванье-Мотта. При этом энергия фотона, которая соответствует краю поглощения, понижается на размер величины связи. При достаточной интенсивности света в полупроводниках может образоваться значительное количество экситонов. При увеличении их концентрации происходит конденсация, и образовывается электронно-дырочная жидкость.

Поверхность полупроводника



Такими словами обозначают несколько атомных слоев, что расположены около границы устройства. Поверхностные свойства отличаются от объемных. Наличие данных слоев нарушает трансляционную симметрию кристалла. Это приводит к так называемым поверхностным состояниям и поляритонам. Развивая тему последних, следует ещё сообщить и про спиновые и колебательные волны. Из-за своей химической активности поверхность укрывается микроскопичным слоем сторонних молекул или атомов, которые были адсорбированы из окружающей среды. Они-то и определяют свойства тех нескольких атомных слоев. На счастье, создание технологии сверхвысокого вакуума, при котором создаются полупроводниковые элементы, позволяет получить и сохранить на протяжении нескольких часов чистую поверхность, что позитивно сказывается на качестве получаемой продукции.

Полупроводник. Температура влияет на сопротивление

Когда температура металлов возрастает, то растёт и их сопротивление. С полупроводниками всё наоборот – при таких же условиях этот параметр у них уменьшится. Дело тут в том, что электропроводность у любого материала (а данная характеристика обратно пропорциональна сопротивлению) зависит от того, какой заряд тока имеют носители, от скорости их передвижения в электрическом поле и от их численности в одной единице объема материала.

В полупроводниковых элементах при росте температуры возрастает концентрация частиц, благодаря этому увеличивается теплопроводность, и уменьшается сопротивление. Проверить это можно при наличии нехитрого набора юного физика и необходимого материала – кремния или германия, также можно взять и сделанный из них полупроводник. Повышение температуры снизит их сопротивление. Чтобы удостовериться в этом, необходимо запастись измерительными приборами, которые позволят увидеть все изменения. Это в общем случае. Давайте рассмотрим пару частных вариантов.

Сопротивление и электростатическая ионизация

заряд в полупроводниках

Это связано с туннелированием электронов, проходящих через очень узкий барьер, который поставляет примерно одну сотую микрометра. Находится он между краями энергетических зон. Его появление возможно только при наклоне энергетических зон, который происходит только под влиянием сильного электрического поля. Когда происходит туннелирование (что являет собой квантовомеханический эффект), то электроны проходят через узкий потенциальный барьер, и при этом не меняется их энергия. Это влечёт за собой увеличение концентрации носителей заряда, причем в обеих зонах: и проводимости, и валентной. Если развивать процесс электростатической ионизации, то может возникнуть туннельный пробой полупроводника. Во время этого процесса поменяется сопротивление полупроводников. Оно является обратимым, и как только будет выключено электрической поле, то все процессы восстановятся.

Сопротивление и ударная ионизация

В данном случае дыры и электроны ускоряются, пока проходят длину свободного пробега под воздействием сильного электрического поля до значений, которые способствуют ионизации атомов и разрыва одной из ковалентных связей (основного атома или примеси). Ударная ионизация происходит лавинообразно, и в ней лавинообразно размножаются носители заряда. При этом только что созданные дыры и электроны ускоряются электрическим током. Значение тока в конечном результате умножается на коэффициент ударной ионизации, который равен числу электронно-дырочных пар, что образовываются носителем заряда на одном отрезке пути. Развитие данного процесса в конечном итоге приводит к лавинному пробою полупроводника. Сопротивление полупроводников также меняется, но, как и в случае с туннельным пробоем, обратимо.

Применение полупроводников на практике

полупроводник температура

Видео: 031 Зависимость сопротивления полупроводника от освещённости

Особенную важность этих элементов следует отметить в компьютерных технологиях. Почти не сомневаемся, что вас бы не интересовал вопрос о том, что такое полупроводники, если бы не желание самостоятельно собрать предмет с их использованием. Невозможно представить работу современных холодильников, телевизоров, компьютерных мониторов без полупроводников. Не обходятся без них и передовые автомобильные разработки. Также они применяются в авиа- и космической технике. Понимаете, что такое полупроводники, насколько они важны? Конечно, нельзя сказать, что это единственные незаменимые элементы для нашей цивилизации, но и недооценивать их тоже не стоит.

Применение полупроводников на практике обусловлено ещё и целым рядом факторов, среди которых и широкая распространённость материалов, из которых они изготавливаются, и легкость обработки и получения желаемого результата, и другие технические особенности, благодаря которым выбор ученых, разрабатывавших электронную технику, остановился на них.

Заключение

Мы подробно рассмотрели, что такое полупроводники, как они работают. В основе их сопротивления заложены сложные физико-химические процессы. И можем вас уведомить, что описанные в рамках статьи факты не дадут в полной мере понять, что такое полупроводники, по той простой причине, что даже наука не изучила особенности их работы до конца. Но нам известны их основные свойства и характеристики, которые и позволяют нам применять их на практике. Поэтому можно поискать материалы полупроводников и самому поэкспериментировать с ними, соблюдая осторожность. Кто знает, возможно, в вас дремлет великий исследователь?!



Внимание, только СЕГОДНЯ!


Поделись в соцсетях:
Оцени статью:


Похожее
» » » Что такое полупроводники? Сопротивление полупроводников